
Using Open Mathematical Documents to
interface Computer Algebra and Proof Assistant

systems?

Jónathan Heras, Vico Pascual, and Julio Rubio

Departamento de Matemáticas y Computación, Universidad de La Rioja,
Edificio Vives, Luis de Ulloa s/n, E-26004 Logroño (La Rioja, Spain).

{jonathan.heras, vico.pascual, julio.rubio}@unirioja.es

Abstract. Mathematical Knowledge can be encoded by means of Open
Mathematical Documents (OMDoc) to interface both Computer Alge-
bra and Proof Assistant systems. In this paper, we show how a unique
OMDoc structure can be used to generate dynamically, both a Graphical
User Interface for a Computer Algebra system and a script for a Proof
Assistant. So, the OMDoc format can be used to represent different as-
pects. This generic approach has been made concrete through a first
prototype interfacing of the Kenzo Computer Algebra system and the
ACL2 Theorem Prover, both based on the Common Lisp programming
language. An OMDoc repository has been developed allowing the user
to customize the application in an easy way.

1 Introduction

OpenMath is an XML standard widely adopted to express mathematical knowl-
edge. Nevertheless, up to now, its possibilities seem underestimated. It is mostly
used as a partner of MathML, [2], providing a mechanism for describing the se-
mantics of the MathML presentation format for mathematical objects. Besides
it has been successfully employed to interoperate among Computer Algebra sys-
tems [4]. Being important, this use of OpenMath looses the reasoning possibilities
given by content dictionaries, where axioms and properties of structures can be
encoded.

As an example of this weak use of OpenMath we could show our own work,
about giving an intelligent mediated access to the Kenzo [7] symbolic compu-
tation system. In [13] we presented an architecture based on OpenMath and
allowing, in principle, to dynamically load new modules in a Graphical User
Interface (GUI) for the Kenzo system. The main obstacle to plug-in dynam-
ically new modules, was that OpenMath content dictionaries (the OpenMath
technology used in that paper) are not designed to store code parts. So, in our
new development we have moved from OpenMath content dictionaries to Open
? Jónathan Heras works with a grant of Comunidad de La Rioja. Partially supported

by Universidad de La Rioja, project API08/08, and Ministerio de Educación y Cien-
cia, project MTM2006-06513.



Mathematical Documents, OMDoc [16], which allow us to encode information on
both the user interface specification and the code, carrying out the functionality
of the GUI. This fulfills our objective of loading dynamically new modules into
the GUI.

In addition, we realized that it was possible to take advantage of the OM-
Doc technology to represent different kinds of information allowing us to extend
our system by including deduction capabilities. In order to do this we have ex-
ploited the content dictionaries’ capacities for representing richer mathematical
knowledge. To be precise, each mathematical structure used in Kenzo has been
represented by means of an algebraic specification which has been embedded
in OMDoc documents dealing with simplicial and algebraic structures. These
OMDoc documents are then used to construct some encapsulates in the ACL2
theorem prover [14]. ACL2 is a system for proving properties of programs written
in (a subset of) Common Lisp.

Thus, from some OMDoc documents all the pieces needed to dynamically
customize a GUI and to integrate a Computer Algebra system, Kenzo [7], with
a Proof Assistant, namely ACL2 [14], can be generated. So, the definitions and
examples included in the OMDoc documents can be formally validated.

So, providing OMDoc documents deal with specifying the mathematical
structures used in a system together with the ones that specifying interfaces
and the ones that define the interaction, it is possible to interoperate with Com-
puter Algebra or Proof Assistant systems by means of OMDoc. In particular, we
have enhanced our Kenzo GUI [13] to include an experimental ACL2 interface.
This allows us, to a limited extent, to integrate, in a same system interaction
(i.e. representation), computation (through the Kenzo kernel) and deduction (by
means of ACL2 proving).

The organization of the paper is as follows. In the next section, we explain
what our OMDoc documents are specifying. In Section 3, the way of representing
a dynamical GUI by means of some OMDoc documents is explained. The same
task with respect to the deductive part and the ACL2 system is undertaken in
Section 4. The way in which all the pieces are integrated is presented in Section
5. The paper ends with Conclusions, Further Work and the Bibliography.

2 Specifying with Open Mathematical Documents

The Kenzo system works with the main mathematical categories used in Com-
binatorial Algebraic Topology, [17]. In [13], a framework wrapping Kenzo with a
Phrasebook as external interface, was developed, so the unique possible interac-
tion with it is by means of OpenMath. This framework is shown in Figure 1. In
addition, an OpenMath content dictionary [3] was defined for each mathematical
category which Kenzo system works with.

As we already commented at the beginning of this paper, it is well-known
that OpenMath is aimed at expressing mathematical knowledge but not any
other kind of interaction.



Fig. 1. An skeleton of the framework wrapping Kenzo.

In order to make the development of clients of our framework easier, we have
intended to supplement it with information related to both the user interaction
and functionality of the user interface. For this task, we have used OMDoc.

OMDoc [16] format is an open markup language for mathematical documents
and the knowledge encapsulated in them. One of its goals is aimed at represent-
ing mathematical documents on the web. For this, OMDoc format allows for the
representing of the three levels of information in mathematical knowledge: for-
mulæ, mathematical statements and mathematical theories. OMDoc format is
made up of several modules, each one devoted to some concrete tasks. Different
sub-languages, related to them, including only part of the OMDoc functionality
have been specified.

In order to specify the interaction and functionality of a user interface for
Kenzo, we have focused on three of them, namely the Basic OMDoc, OMDoc
content dictionaries and MathWeb OMDoc sub-languages; the complete list of
sub-languages and their descriptions can be found in [16].

The OpenMath content dictionaries developed for the Kenzo system provide
not only the different objects used in the Kenzo system (spheres, Moore spaces,
loop-spaces and so on) but also a concrete specification of the mathematical
structures that they represent. So, the signature (which consists of the headers
of the functions) and their formal properties (this will be useful to interact with
theorem provers, as we will show in Section 4) are included in the content dic-
tionaries. The sub-language for OMDoc content dictionaries allows us to specify
the meaning of basic mathematical objects (symbols) by axioms and definitions;
and grouping them, it is possible to refer to the symbols defined via their theory.
In general, OMDoc content dictionaries can add some functionalities with re-
spect to the OpenMath content dictionaries, so our previous OpenMath content
dictionaries can be embedded into OMDoc content dictionaries.

With respect to the user interaction and interface functionality specification,
we have used the MathWeb OMDoc sub-language. It has been specified as a
content-oriented basis for web publishing of mathematics. Our use of this sub-



language is not related to this topic, but we want to take advantage of the
infrastructure for images, applets, code fragments, and other data provided by
this sub-language. To be precise we have used the <code> tag to embed Common
Lisp code in our OMDoc documents. Thus, several OMDoc documents have been
generated for different tasks, each one of them having different proposals and
utilities but sharing the same structure and format.

An OMDoc document includes the functionality of our framework so it can be
interpreted as a Kenzo wrapper. With the same format, other OMDoc documents
embed the necessary code to interact with other systems, as we will see in Section
4.

With respect to the GUI, several OMDoc documents have been defined.
On the one hand, one OMDoc document contains the graphical elements and
another one contains their event handlers. On the other hand, the interface of
the interaction with other systems has been defined in another OMDoc, as we
will explain in Section 5.

Finally, the Basic OMDoc sub-language is sufficient for mathematical docu-
ments that do not introduce new symbols or concepts. In our system, a Basic
OMDoc Document glues the different documents associated with a mathemat-
ical structure together. For instance, in the case of simplicial sets, which will
be used in the following sections to illustrate the ideas, three different OMDoc
documents are provided: the first one gives an algebraic specification of the sim-
plicial sets using the OMDoc content dictionaries, the second one supplies the
functions to build simplicial sets in our system (abstracting the ones of Kenzo),
and the last one is used to define the GUI that can be loaded as a new module of
our main GUI. The Simplicial Set Basic OMDoc Document contains the links to
these documents, clustering all the mathematical information about simplicial
sets that appear in our system.

To sum up, OMDoc has been used to specify both mathematical knowledge
and different kinds of interactions.

3 Generating a GUI for the Kenzo system dynamically

Thinking about increasing the usability of Kenzo, a GUI has been developed to
interact with the system, making the interaction with the user easier. The first
GUI presented, detailed in [12], allowed the user to build different spaces (like
spheres, Moore spaces, loop spaces and so on) and compute homology and some
homotopy groups, using the Kenzo system as its kernel. Although it worked in
a correct way, it had an extensibility problem.

At this moment the Kenzo system keeps on growing. There are several re-
searchers that are developing new functionalities for it; for instance, spectral
sequences [19], resolutions [18], Koszul complexes [20], and so on. It would be
desirable that our GUI could evolve with Kenzo. To add new functionality to
the Kenzo system, a file with the new functions must be included; the Kenzo
main code is not modified. However, to increase the functionality of our GUI, its
code must be modified, and obviously, this is a problem. It is worthwhile having



an extensibility system for the GUI that consists in including only a file with
the new functionality, as it is done in Kenzo itself.

The first approach consisted in extracting all the functionality included in
the first version of the GUI, changing from a static to a dynamic GUI. So the
starting point was a meaningless GUI, which looked like that of Figure 2, and
OpenMath content dictionaries dealt with the evolution of the interface itself:
when loading a content dictionary, the interface changed, with new options ap-
pearing in the toolbar. Each content dictionary had a module associated with
it, including the extension of the system, both the GUI and the functionality.
Even if this extensibility way worked in a correct way, it had a drawback: adding
the necessary modules to our GUI in order to extend its functionality must be
programmed in Allegro Common Lisp [8].

Fig. 2. Screen-shot of a meaningless Kenzo Interface.

In [10], Hanus and Kluß presented a proposal for the declarative programming
of user interfaces (UI) with the aim of abstracting the ingredients for high-level
UI programming. To be precise, three constituents are distinguished: structure,
functionality and layout. Each UI has a specific hierarchical structure which
typically consists in basic elements (like text input fields or selection boxes)
and composed elements (like dialogs); when a user interacts with a UI, some
events are produced and the UI must respond to them. The event handlers
must include the necessary functionality. These elements are put in a layout to
achieve a visually appealing appearance of the UI. The Curry language [9] is
used to declare all the ingredients in that work. Instead of doing a similar work,
but using the Lisp language, we have preferred to define the structure of our GUI
which is based on XUL (XML User Interface) [11]. XUL is Mozilla’s XML-based



user interface language that lets us build feature rich cross-platform applications
defining all the elements of a UI.

To be based on the previous ones, the structure of our GUI structure is
provided by XUL, functionality has been programmed in Allegro Common Lisp
and the default layout has been used, although we could have used a style sheet
to customize our application. Thus, we have all the ingredients to extend our
meaningless GUI.

Some OMDoc documents being based on the MathWeb sub-language and
containing all the information needed to dynamically add the Kenzo functionality
to the GUI have been defined. For each Kenzo mathematical structure, two
OMDoc documents have been written. The first one can be seen as a wrapper of
the Kenzo functionality for that mathematical structure. This functionality has
been included into the OMDoc document by using the <code> tag of the EXT
OMDoc Module, which is aimed at embedding pieces of program code into an
OMDoc document. For instance, the next fragment of code is an example of the
<code> tag use.

<code id="create-sphere">
<metadata>

<description>the function create-sphere has one
argument as input, the dimension of the sphere,
and builds the sphere of that dimension in the
system.

</description>
</metadata>
<data format="application/Kenzo-wrapper">

<![CDATA[... << the create-sphere code goes here >>...]]>
</data>
<input>

<CMP>A integer with the dimension of the sphere.</CMP>
</input>
<output>

<CMP>A integer that identifies the sphere</CMP>
</output>
<effect>

<CMP>None.</CMP>
</effect>

</code>

The second one includes the definition of the GUI corresponding to the spe-
cific mathematical structure. This OMDoc document contains the structure,
functionality and layout of our GUI. In order to include the XUL containing the
structure and the layout, an OpenMath Foreign object (<OMForeign>), which
allows to associate NON-OpenMath objects with OpenMath objects, has been
used. Figure 3 shows an example of the definition of the sphere dialog with its
XUL code. With respect to the functionality, which is the event handlers, it has



been included into a <code> tag again. Figure 4 shows our GUI with the sim-
plicial sets functionality loaded; a new menu has come out allowing the user to
build simplicial sets, the interaction of the interface can be seen in [13].

Fig. 3. The sphere dialog with its XUL description.

Fig. 4. Screen-shot of Kenzo Interface for simplicial sets.

Note that the <code> tag would be able to include code for different appli-
cations allowing us to build several UIs. This last aspect is related to transform
our desktop application into a Web User Interface. Usually the applications de-
veloped using XUL have got associated Javascript code and can be executed
in different operating systems and in the web. So, by including this Javascript
code in our OMDoc document, a simple program would be able to extract the



structure definition and the Javascript code to obtain an application running in
the web and in different operating systems.

Thus, thanks to these two OMDoc documents, new functionality can be
added to our meaningless GUI in an easy way. Defining another OMDoc docu-
ment that links both of them is the only thing that must be done. In this way,
knowing the XUL schema for any UI and how to interact with the system, an
extensibility level similar to that of the Kenzo system is reached; that is, new
functionality can be included by means of a unique file. A concrete example of
the topics explained in this Section will be shown in Section 5.

4 An interpreter from OpenMath to the ACL2 Theorem
Prover

As a different direction of research, we are trying to take more advantage of the
semantical possibilities of OpenMath. Concretely, with the aim of including some
deductive capabilities in our system, we have added, in our content dictionaries,
the properties which the mathematical structures encoded in our OMDoc doc-
uments must really satisfy. This opens the possibility of interfacing our system
with the Common Lisp theorem prover ACL2 [14], which has already been used
to formalize some aspects of Simplicial Topology [1]. A similar approach, but
using the proof checkers Lego and Coq instead of the ACL2 theorem prover, was
proposed by Caprotti and Cohen in [5].

ACL2 supports the constrained introduction of new function symbols by
means of the encapsulate notion. An encapsulate in ACL2 is composed of a set
of function signatures, a set of properties of these functions and a “witness” for
each one of the functions, where a witness is an existing function that can be
proved to have the required properties.

We have based our work on the Small Type System formalism, see [6] for
details, which has been designed to give semi-formal signatures to OpenMath
symbols. By using this mechanism we have included signatures in OpenMath
object definitions. In addition, we have specified their properties in two different
ways (by means of <FMP> and <CMP> tags) and we have associated an instance
example with them. Gathering together all the previous aspects, it is possible
to include in the content dictionaries all the needed information to generate an
ACL2 encapsulate from an OMDoc content dictionary.

By using the OMDoc content dictionaries sub-language to define the ob-
jects, an interpreter which transforms each OMDoc content dictionary into an
executable encapsulate in ACL2, has been developed.

4.1 A case study: simplicial sets

Definition 1. A simplicial set K, [7], is a disjoint union K =
⋃

q≥0

Kq, where

the Kq are sets, together with functions

∂q
i : Kq → Kq−1, q > 0, i = 0, . . . , q,
ηq

i : Kq → Kq+1, q ≥ 0, i = 0, . . . , q,



subject to relations
∂q−1

i ∂q
j = ∂q−1

j−1∂
q
i , i < j

ηq+1
i ηq

j = ηq+1
j ηq

i−1, i > j

∂q+1
i ηq

j = ηq−1
j−1∂

q
i , i < j

∂q+1
i ηq

i = ∂q+1
i+1 η

q
i , identity

∂q+1
i ηq

j = ηq−1
j ∂q

i−1, i > j + 1

The functions ∂ and η are called the face operators and the degeneracy op-
erators respectively.

In a first step, a content dictionary for simplicial sets has been developed. To
define a simplicial set, we must provide the disjoint sets {Kq}q≥0 and the face
and degeneracy operators. With respect to the underlying set of a simplicial set
K, the union

⋃
q≥0

Kq can be seen as a graded set, and it is possible to associate to

it, a characteristic function which, from an element x and a degree g, determines
if the element belongs to the set Kg. This is the Kenzo way of representing the
underlying set of a simplicial set. To be precise, an invariant function encodes
the characteristic function of its underlying set K.

Being based on the previous way of representation, the following OpenMath
signature has been defined for simplicial sets.

<Signature name="simplicial-set">
<OMOBJ>

<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA id="face">

<OMS cd="sts" name="mapsto"/>
<OMS cd="sts" name="Object"/>
<OMS cd="sts" name="PositiveInteger"/>
<OMS cd="sts" name="PositiveInteger"/>
<OMS cd="sts" name="Object"/>

</OMA>
<OMA id="degeneracy">

<OMS cd="sts" name="mapsto"/>
<OMS cd="sts" name="Object"/>
<OMS cd="sts" name="PositiveInteger"/>
<OMS cd="sts" name="PositiveInteger"/>
<OMS cd="sts" name="Object"/>

</OMA>
<OMA id="inv">

<OMS cd="sts" name="mapsto"/>
<OMS cd="sts" name="Object"/>
<OMS cd="sts" name="PositiveInteger"/>
<OMS cd="setname2" name="boolean"/>

</OMA>
<OMV name="Simplicial-Set"/>



</OMA>
</OMOBJ>

</Signature>

The formal mathematical properties of the simplicial sets are given in the
<FMP> tag of the simplicial-set definition. In this case the <FMP> element states
the properties of invariance of face and degeneracy operators and the relations
among them. We have also included the mathematical properties in natural
language using the <CMP> tags. For instance, the face operator invariance has
been represented as follows.

<CMP> The face operator is invariant </CMP>
<FMP>
...
<OMA>

<OMS cd="logic1" name="implies"/>
<OMA>

<OMS name="inv"/>
<OMV name="x"/>
<OMV name="q"/>

</OMA>
<OMA>

<OMS name="inv"/>
<OMA>

<OMV name="face"/>
<OMV name="x"/>
<OMV name="i"/>
<OMV name="q"/>

</OMA>
<OMA>

<OMS cd="arith2" name="minus"/>
<OMV name="q"/>
<OMI>1</OMI>

</OMA>
</OMA>

</OMA>
...
</FMP>

Finally, an instance example of simplicial set has been included. In this case
we have considered the simplicial set whose sets only have an element, nil, and
each face operations of degree q returns the element of degree q − 1.

<example>
...

<OMBIND>
<OMS name="face"/>



<OMBVAR>
<OMV name="x"/>
<OMV name="i"/>
<OMV name="q"/>

</OMBVAR>
<OMS cd="list" name="nil"/>

</OMBIND>
...
</example>

From this content dictionary, an ACL2 encapsulate can be generated. From
now on, we are going to explain the transformation from our OMDoc content
dictionary to an ACL2 encapsulate; both of them in the simplicial sets case.

Each application OMA inside the main mapsto of the simplicial set signature
is translated into a function of the encapsulate, in the following way. The id of
the application tag will be the name of the function, the mapsto is converted to
=> in ACL2. The mapsto symbol is applied to n variables and/or symbols, the
first n − 1 will be the inputs and the last one the output. Note that the ACL2
system is a system without explicit typing, so, although the type of the objects
has been included in the OMDoc content dictionary they will be translated into
asterisks in ACL2. Adding the necessary brackets, the following ACL2 signature
is obtained.

(((face * * *) => *)
((degeneracy * * *) => *)
((inv * *) => *))

The following step is to transform the mathematical properties, specified into
the content dictionary, into ACL2 lemmas. In order to do this, we proceed in
the following way. First of all, the <CMP> tags will be translated into comments
in ACL2, expressed with “;”. To each <FMP> tag, a new lemma, defthm in
ACL2 syntax, with the name prop-n where n is a variable that indicates the
number of the property, must be defined. The implies, and, eq and minus
OpenMath symbols are translated respectively into the implies, and, equal
and - ACL2 functions. For instance, the following ACL2 lemma about the face
operator invariance is obtained from the respective one in the content dictionary.

; The face operator is invariant
(defthm prop1
(implies (inv x q) (inv (face x i q) (- q 1))))

And, finally, from the <example> tags, the witnesses is obtained. Each ex-
ample in a content dictionary will be a local definition in an ACL2 encapsulate.
The OMBIND symbol indicates the beginning of the definition, in ACL2 defun, its
first argument is a symbol indicating the name of the function, the second one
is an OMBVAR representing the name of the parameters and the third one is the
body. If some of the arguments of the function do not appear in its body, they



will be ignored to obtain a correct ACL2 function, as we show in the translation
of the previous example:

(local (defun face (x i q)
(declare (IGNORE x i q))
nil))

The necessary functions to transform the OMDoc content dictionaries into
the respective ACL2 encapsulates are stored in an OMDoc document which is
based on the MathWeb sub-language in the same way that we explained in
Section 3. By collecting all OMDoc documents of this kind an interpreter from
OpenMath to ACL2 is obtained.

5 Integrating all the pieces

Up to now, we have developed different OMDoc documents that can be used
to achieve different goals. The following task was to use these documents to
improve the functionality of our framework, adapting it to the needs of different
users without modifying the main system.

Gathering together all the OMDoc documents developed, an OMDoc repos-
itory is obtained. OMDoc documents with two different intentions have been
included. On the one hand, some OMDoc documents represent the integration
with other systems. These documents can be considered as interpreters from
Kenzo (by means of OMDoc) to the specific system. On the other hand, other
OMDoc documents try to make the interaction with Kenzo easier. There are
OMDoc documents representing some of the mathematical structures presented
in Kenzo, for instance the simplicial sets, using the content dictionary format.
These are the basic OMDoc documents for the system. Another kind of OMDoc
document provides the Kenzo functionality, so, in a sense they can be seen as a
wrapper of the phrasebook of our framework (see Figure 1). And finally, from our
meaningless GUI, different OMDoc documents allow us to dynamically generate
different GUIs, each one of them containing, a part of the Kenzo functionality.

From these different kinds of documents templates that customize the system
can be generated. If a user wants to work with a specific structure of the Kenzo
system, he must create a document that links to the documents that provide
the corresponding content dictionaries, the necessary Kenzo functionality and
the part of the GUI which must be added to the meaningless GUI (see Figure
2). Besides, if he wanted to interact with another system, he must supply an
interpreter from Kenzo OMDoc documents to the system and a client to interact
(for instance, a GUI, a web service, and so on). If some of the OMDoc are not
available, the user can develop them and in this way the system grows up. In
addition the different templates, that is, an OMDoc grouping all the OMDoc
documents needed for an specific interaction, can also be added to the repository
to be used by any other clients.

To define these templates the Basic OMDoc sub-language is used. Namely,
the DOC module provides the document infrastructure (in particular, the



<omgroup> tag allows us to group the references to other documents) and the
DC module supplies the metadata.

Now, we can consider the following scenario which integrates all the pieces
explained in the previous sections. On the one hand, we want to be able to work
with the simplicial sets using the Kenzo functionalities, for instance, compute
their homology and homotopy groups. On the other hand, we want to use ACL2
to prove that the simplicial sets built by Kenzo (spheres, Moore Space, cartesian
product and so on), and used in our system, are really simplicial sets. In this
way representation, computation and deduction will be integrated in the same
system.

In our OMDoc repository, we can find almost all the ingredients to customize
our application to achieve our objective. For the simplicial sets, (1) an OMDoc
content dictionary that defines their mathematical structure (explained in Sec-
tion 4), (2) the logic to interact with Kenzo and (3) the presentation for the
GUI (both explained in Section 3) are available. With respect to ACL2, (4)
an interpreter which is able to translate from the OMDoc content dictionary
for simplicial sets into an ACL2 encapsulate can be found. The only thing still
missing is the present user interface, allowing the ACL2 system to interact with
our system. In this case, the needed OMDoc document (5) to customize the GUI
by adding both a new tab page and a new menu to interoperate with ACL2, as
can be seen in Figure 5, have been developed. The new tab page contains two
areas and one button: the first area will be used to write the ACL2 instructions,
the button will send the instructions to ACL2, and finally the second area will
show the ACL2 result. Note that, the encapsulate related to simplicial sets is
written (dynamically, from the corresponding content dictionary) into the left
area and the answer of ACL2 after evaluating it, appears in the right zone.

Fig. 5. Customized GUI.



To sum up, the head document used to customize the application refers to the
previous five documents, the documents containing the mathematical definition,
functionality and a way of presentation of the simplicial sets, and the ACL2
interpreter and a way of presenting the results. In this case, to build this OMDoc,
we must provide the metadata (authorship, title and so on) and the reference to
the different documents;

<omgroup type="sequence">
<ref xref="simplicial-sets-conceptual-model"/>
<ref xref="simplicial-sets-logic"/>
<ref xref="simplicial-sets-presentation"/>
<ref xref="acl2-logic"/>
<ref xref="acl2-presentation"/>

</omgroup>

When a user exits the application, his configuration is saved for future ses-
sions.

All this work is made without any changes in the code of our previous frame-
work. The only thing that must be done consists in loading an OMDoc, contain-
ing all the necessary information to customize the application adding the new
functionality.

6 Conclusions and Further Work

In this paper we have reported on an OMDoc repository. This repository is
composed of several OMDoc documents which have been defined using differ-
ent OMDoc sub-languages and have also been used to reach different goals. On
the one hand, some OMDoc documents based on OMDoc content dictionaries
sub-language, supply the mathematical structure of our system. On the other
hand OMDoc documents in MathWeb sub-language provide us with the nec-
essary tools to specify user interfaces, the functionality of these interfaces, the
functionality of the system itself and also the interaction with other systems.

As an example of the use of this repository we have described a first proto-
type that allows an integration of the Kenzo computer algebra system and the
ACL2 theorem proving system. The interaction part of our OMDoc documents
generates new modules in the GUI, and the axiomatic part generates an encap-
sulate in ACL2, allowing us, to check in an automated way, that the properties
are consistent.

Once the ACL2 and the Kenzo systems are integrated in a same GUI, much
more work is needed to implement more interesting interactions. For instance,
encapsulates should be generated for the rest of the mathematical structures
appearing in Kenzo (algebras, reductions, and so on). More important, the en-
capsulates should be the basis for more complex theorem proving inside the
system. As an example, let us consider the construction of a sphere in Kenzo.
The GUI should prepare an ACL2 script stating that this concrete (Common
Lisp) object is a (functional) instance of the encapsulate simplicial-set. ACL2



very likely will not be able to prove those statements automatically, and some
user interaction will be needed. Then, both the interface and the OMDoc should
be enriched to cope with the user actions, allowing the system to recover, in
further sessions, the full proof script, and then automating the verification of
each construction generated in the system.

References

1. Andrés M., Lambán L., Rubio J., Ruiz Reina J. L., Formalizing simplicial topology
in ACL2, In Proceedings Workshop ACL2 2007, Austin University, 34 – 39.

2. Ausbrooks R. et al., Mathematical Markup Language (MathML) Version 3.0 (third
edition), 2008. http://www.w3.org/TR/MathML3/.

3. Buswell S., Caprotti O., Carlisle D.P., Dewar M.C., Gaëtano M., Kohlhase M.
OpenMath Version 2.0, 2004. http://www.openmath.org/.

4. Caprotti O. et al., Using OpenMath Servers for Distributing Mathematical Com-
putations, ATCM 2000: Proceedings of the Fifth Asian Technology Conference in
Mathematics (2000) 325–336.

5. Caprotti O., Cohen A., Connecting proof checkers and computer algebra using
OpenMath, THPOLs 1999, Lectures Notes in Computer Science (1999) 109–112.

6. Davenport J., A Small OpenMath Type System, April 1999,
http://www.openmath.org/standard/sts.pdf

7. Dousson X., Sergeraert F., Siret Y., The Kenzo program, Institut Fourier, Grenoble,
1999. http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.

8. Franz Inc. Allegro Common Lisp. http://www.franz.com.
9. Hanus M., Curry: An Integrated Functional Logic Language (Vers. 0.8.2) (2006),

http://www.curry-language.org.
10. Hanus M., Kluß C., Declarative Programming of User Interfaces, PADL 2009, Lec-

tures Notes in Computer Science, 5418 (2009) 16–30.
11. Hyatt D. et al., XML User Interface Language (XUL) 1.0

http://www.mozilla.org/projects/xul/.
12. Heras J., Pascual V., Rubio J., Mediated Access to Symbolic Computation Systems,

MKM 2008, Lectures Notes in Artificial Intelligence, 5144 (2008) 446–461.
13. Heras J., Pascual V., Rubio J., Mediated Access to Symbolic Computation Systems:

An OpenMath Approach.. Preprint.
14. Kaufmann, M., Manolios P., Moore, J., Computer-Aided Reasoning: An Approach.

Kluwer Academic Press, Boston (2000).
15. Kaufmann M., Moore J., Structured theory development for a mechanized logic,

Journal of Automated Reasoning, 26(2) (2001) 161-203.
16. Kohlhase M., OMDoc – An open markup format for mathematical documents [Ver-

sion 1.2], Springer Verlag (2006).
17. May J.P., Simplicial objects in Algebraic Topology, Van Nostrand Mathematical

Studies (11), (1967).
18. Romero A., Ellis G., Rubio J., Interoperating between Computer Algebra systems:

computing homology of groups with Kenzo and GAP. Preprint.
19. Romero A., Rubio J., Sergeraert F., Computing Spectral Sequences. Journal of

Symbolic Computation 41(10) (2006) 1059-1079.
20. Rubio J., Sergeraert F., Constructive Homological Algebra and Applications Genova

MAP Summer School (2006).


